JOHN H. GIBBONS NEWS TIMELINE
Prepared by Cynthia Boyles
Miller Center, University of Virginia, 08/17/2006

1954 Gibbons receives his Doctorate in Physics from Duke University. (“Biography of Dr. John H. Gibbons”)

1969-1973 Gibbons serves as Director of the Environmental Program at Oak Ridge National Laboratory. (“John H. Gibbons”)

1974-1979 Gibbons is a Professor of physics and the Director of Energy, Environment, and Resources Center at the University of Tennessee, Knoxville. (“John H. Gibbons”)

1979-1993 Gibbons directs the Congressional Office of Technology Assessment, which provides Congress with nonpartisan analyses on a range of issues dealing with technology and public policy. (“Biography of Dr. John H. Gibbons”)

1993 President Bill Clinton appoints Gibbons to be the Director of the Office of Science and Technology Policy (OSTP). This post serves as the top advisor to the President on scientific and technology issues. (“Biography of Dr. John H. Gibbons”)

January The Senate confirms Gibbons as the new OSTP Director. The media reports that Vice President Al Gore knows Gibbons and played a role in his selection and that Gibbons’ selection breaks with the tradition of choosing a current research scientist. Gibbons’ appointment was initially surprising, as his name was not on
the list of potential appointees circulated by lobbyists. *The Washington Post* reports that Gibbons is experienced in dealing with politicians and has good connections with Congress. His early confirmation will allow him to help choose the President’s science and technology team, as well as assist the White House on the federal budget. (*The Washington Post*, 01/29/1993)

Gibbons states that the Clinton Administration should continue seeking foreign money to share the costs of large science projects, such as the superconducting super collider and the space station. “The larger these things get, the more inherently they should be thought of as international ventures,” Gibbons says. However, he acknowledges that space efforts rooted in national security are different, in which case they “need to be very much our own purview.” (*Houston Chronicle*, 01/27/1993)

February

The Clinton Administration wants science and technology to become the “engine for economic growth,” according to Gibbons. At the meeting of the American Association for the Advancement of Science (AAAS), Gibbons outlines some of the challenges facing the Administration regarding science and technology, including making difficult choices regarding the funding of expensive projects, such as the space station and super collider; gaining more practical benefits from basic scientific research without limiting creativity; and learning how to be a true international partner. Gibbons states, “We cannot proceed separately” toward goals such as space exploration and reducing global warming “because they really are beyond our means.” (*The Christian Science Monitor*, 02/18/1993)

Gibbons favors shifting the emphasis in spending toward civilian projects and away from military programs, as spending has shifted in recent years from a 50-50 split between the two to as much as 70 percent for the military during the Reagan Administration. Gibbons says, “I’m not sure 50-50 is the right number, but it’s the right direction.” The idea is to support basic research whose discoveries may later provide useful applications. (*The Boston Globe*, 02/16/1993)

Expensive projects such as the space station and super collider will likely be scaled back in order to reduce the cost, Gibbons says. However, he states that the President supports the maintenance of the space station and super collider projects and that international agreements on them will be honored. Gibbons says that such large projects are important because they involve international cooperation that “forces mankind to come to grips with the fact that we can come together to work on great projects.” (*The Boston Globe*, 02/16/1993)

Gibbons says that Clinton’s environmental program will emphasize “green technology” with the goal of increasing energy efficiency and creating new manufacturing processes to decrease pollution. He considers global warming to be an area in which international cooperation is important. Gibbons says, “The situation is going to get a lot worse” as more advanced developing countries, such
as India and China, expand their energy use. Thus, “it becomes in our self interest” to help these countries adopt energy efficient technology. (*USA Today*, 02/17/1993; *The Christian Science Monitor*, 02/18/1993)

Clinton and Gore announce a new technology initiative that encourages greater cooperation between government and industry. The initiative’s proposals include expanding the role of the National Institute of Standards and Technology in the Commerce Department to promote joint ventures between business and government, financing research for a national high-speed computer network, creating a partnership between government and the automobile industry to create an “environmentally clean” car, and increasing partnerships between national laboratories and private industry. The program would also make permanent a tax credit for research and development spending, and increase funding to the Environmental Protection Agency for private-industry development of environmental technology. (*The New York Times*, 02/23/1993)

March

Clinton moves the National Space Council into the OSTP, putting Gibbons in charge of coordinating space policy. (*Aerospace America*, 03/1993)

The media reports that the Clinton Administration plans to continue building the superconducting super collider in a tunnel beneath the plains of Texas, but postpones the completion date by two years, with one of the goals being to attract more international partners. However, European nations are not contributing because they are building their own accelerator in Cern, Geneva. Asian countries are resisting requests to contribute, and the media reports that even if Japan joins the project, foreign contributions are unlikely to approach the $1.7 billion originally expected. Gibbons states that there is no question regarding the super collider’s scientific value: “They’re trying to solve some eternal questions about the nature of matter.” Through the recreation of the conditions of the early universe, physicists hope to enhance their understanding of fundamental forces and particles. (*Financial Times*, 03/16/1993)

April

Gibbons announces that the U.S. will seek Russian expertise in redesigning NASA’s space station and sends a letter to NASA Administrator Daniel S. Goldin to limit “confusion regarding the participation of the Russians.” In this April 13 letter, Gibbons says, “I would like to make it clear that the White House has made no policy decision to focus our space station redesign effort around present or future Russian capabilities. In particular, NASA should not limit its redesign options to those compatible with the orbit of the Russian Mir space station.” Russian experts were invited to serve as consultants in the redesign process on an “as-needed basis.” The redesign effort is being conducted at the direction of the White House, which wants the $31 billion cost to be cut in half. Gibbons notes in the letter that the Administration has consulted the space station’s international partners—Canada, Japan, and ten European nations—about the Russian arrangement, but the media reports that some only agreed reluctantly. (*The Washington Post*, 04/15/1993; *U.S. News & World Report*, 04/19/1993)
Clinton submits his economic stimulus package which includes a $445 million supplement to the 1993 federal research and development budget. The FY94 budget has a $76 billion total research budget, which favors certain fields, such as applied research. An example is the National Science Foundation (NSF), whose budget the Administration wants to increase by $447 million. There would be a $300 million increase for transportation, including new developments in aeronautics, intelligent-cars, and high speed railways. Gibbons cautions that difficult choices are being made between equally worthwhile programs. He concedes that there will likely be a difficult budget fight in the future over the request, but the Administration will fight for the essence of the research program. *(The Christian Science Monitor, 04/19/1993)*

The media reports that Gibbons wants to reorganize the federal science and technology establishment around cooperation between government agencies, including interagency research alliances. Gibbons also recommends active involvement and investment in certain sectors, such as automobile technology: “There are clear public benefits to assisting the auto industry for clean air. It’s more cost-effective for us to become involved early in this area.” The media reports that Gibbons has earned a reputation on Capitol Hill as an “honest broker” due to his time as Director of the Office of Technology Assessment (OTA), and that his relationship with Gore is very good. *(The Washington Post, 04/30/1993)*

May

The Clinton Administration proposes spending $1 billion on research for networks and other high-speed computing technology. “Information highways will revolutionize the way we work, learn, shop and live. They promise to have an even greater impact than the interstate freeways or the telephone system,” Gibbons says. Various agencies are working on this, including NASA, the National Science Foundation, and the Commerce and Defense departments. *(The Washington Post, 05/02/1993)*

Gibbons announces that the redesign of the space station is creating “viable options,” but the media reports that some congressmen prefer to have the current design modified instead. Gibbons states that unless changes are made in the space station, other important programs will have to be cut. *(Houston Chronicle, 05/21/1993)*

August

On the 17th, Gibbons and Director of the Office of Management and Budget (OMB) Leon Panetta send a memo to agency heads outlining how to determine research and development priorities for next year’s budget. They list eight specific activities that are the “highest priority” for governmental support: vigorous support for basic research, development of technologies for communications infrastructure, increased investment in advanced manufacturing technologies, collaboration with the auto industry for cleaner, more fuel-efficient cars, creating better computer-based technology for education and training, a transition from military to civilian projects in national laboratories, more investment in energy efficient federal buildings, and the use of information
technologies to make the government more efficient. (*The Boston Globe*, 09/14/1993)

September

The OSTP begins a series of interagency reviews to reassess U.S. aeronautics and space policies. Gibbons says the reviews will assist the Administration in developing national goals and coordinating investment strategies among governmental agencies. (*Aviation Week & Space Technology*, 09/27/1993)

The Clinton Administration announces a new plan for government scientists to collaborate with the U.S. auto industry to seek advances in creating a new propulsion system to replace the gasoline engine. Clinton says, “We intend to do nothing less than redefine the world car of the next century, to propel the auto industry to the forefront of world automobile production.” Gibbons, who the media reports to have been one of the architects of the Detroit-Washington venture, explains that the problems of emissions control and increased gasoline consumption have “enormous” negative consequences, such that measures in the public interest are needed. The hope is that such alternative energy sources will be more efficient and will reduce the need for imported oil. Gibbons argues that the artificial barriers between government and the private sector over the past two decades need to be overcome. (*The Washington Post*, 09/30/1993, 10/07/1993, 10/13/1993)

October

Gibbons testifies in front of the House Subcommittee on Space Science and Applications about efforts to fix problems in the civilian space program and to clarify a proposal to build a space station jointly with Russia. He tells the committee, “The primary message I want to convey…is the Administration’s commitment to the space station Alpha program as a national science and technology priority and our enthusiasm about the opportunities we see emerging from cooperation with Russia.” Gibbons confirms that the U.S. will maintain leadership of any collaborative effort. (*The Washington Post*, 10/07/1993; *Aviation Week & Space Technology*, 10/18/1993)

Gibbons reassures lawmakers that a U.S.-Russian partnership is intended to save money and generate new jobs in the U.S., but agrees that “whatever we do on the Russian option, that should be a reversible process.” Further, Gibbons explains that the Administration has not yet agreed to build the U.S.-international space station at the higher angle orbit required for Russian participation, as NASA is still working on a report describing the potential costs and benefits of the “Russian option.” (*The Washington Post*, 10/07/1993)

The new National Science and Technology Council is created as part of Gore’s plan for “reinventing government.” Gibbons states that this new presidential council will give the White House “greater clout” in coordinating science and technology policy, as well as enabling federal agencies “to work together in a more coherent way.” Gibbons is currently choosing who will serve on the
council, which should be operating by January. *(The San Francisco Chronicle, 10/27/1993)*

Gibbons delivers a speech at the International Biotechnology Expo and Conference in San Francisco, where he outlines the Administration’s policy on science and technology in the post-Cold War era. As technology will be an important factor in improving the economy and creating new jobs, Gibbons says the Administration will make efforts to increase the civilian share of the federal research and development budget to 50 percent, mandate that federal labs devote part of their budgets to research collaboration with industry, and increase funding for the Commerce Department’s Advance Technology Program, which awards grants to the private sector. *(The San Francisco Chronicle, 10/27/1993)*

November

Clinton and Gibbons reorganize the government’s $76 billion science budget. The media reports that OMB Director Leon Panetta agrees to allow Gibbons and the new National Science and Technology Council to take over the research and development budget planning. Gibbons and Panetta co-sign an August 17 internal memo sent to all Cabinet secretaries, which details Clinton’s intentions of cancelling programs, such as some military R&D, and shifting funding to more favored programs, such as environmental science. The memo asks each agency to identify all funding it spends on R&D, and then prioritize each program. *(The Oregonian, 11/08/1993)*

1994

January

NASA repairs the Hubble Space Telescope, which now performs better than the original specifications and is producing scientifically important photos. Gibbons says of the Hubble repair: “We must expect setbacks from time to time. What is shown in this event is one can overcome setbacks.” *(Aviation Week & Space Technology, 01/17/1994)*

February

The media reports that the Clinton Administration’s FY1995 budget asks for over $71 billion for federal research and development, which is about a four percent increase from the previous budget. Gibbons says the budget request demonstrates the Administration’s intent to encourage science and technology as “investments” that will eventually benefit the economy through the creation of new products and jobs. The budget proposal calls for increased research spending on computers and communications, environmental sciences, manufacturing sciences, and diseases such as AIDS and breast cancer. However, critics such as Chairman of the House Science, Space and Technology Committee, Rep. George E. Brown Jr. (D-CA), contend that although there is an increase in the dollar amount, science spending is reduced as a percentage of GDP. *(The New York Times, 02/08/1994; The Washington Post, 02/10/1994)*

Gibbons explains the shift in research priorities at the annual meeting of the American Association for the Advancement of Science: “We’re moving away
from a 60-40 or 75-25 ratio of defense-to-civilian funding, however you want to define it, towards its more traditional 50-50 commitment, obtained in the 50s and 60s.” Due to the need to contain the budget deficit as well as respect spending caps, Gibbons says “there is no new money out there” for science and technology in the proposed 1995 budget, as favoring some programs creates “extra pain elsewhere in the budget.” However, Gibbons reassures scientists “the President feels we must sustain and support the science and technology enterprise.” (The Buffalo News, 02/19/1994; The Christian Science Monitor, 02/22/1994)

The European Particle Physics Center invites the United States to join its project to build a machine similar to the super collider (which was cancelled by Congress last year), to be built at the center’s site near Geneva, Switzerland. Speaking of the proposed collaboration, Gibbons says, “We were delighted at the invitation [and] it is under active consideration.” This project could become a prototype for internationalizing “big science,” which contributes to the common store of knowledge, but which the U.S. can no longer afford on its own. Gibbons says that the Administration “has been avidly interested in the internationalization of science.” (The Christian Science Monitor, 02/23/1994)

Gibbons says it is likely some changes will occur at either Los Alamos National Laboratory in New Mexico or Lawrence Livermore National Laboratory in California. Gibbons calls the weapons facilities “anachronistic” and says one of the two could be converted to civilian use. (New Scientist, 02/26/1994)

March

Gore and Gibbons join the semiconductor industry in launching an initiative to keep American chip-makers at the forefront of semiconductor technology. “Our emphasis is not on spending more money, but on investing federal research and development dollars more wisely,” Gore says. The initiative will build upon the success of Sematech, the government-industry consortium that develops new chip-making technologies. (New Scientist, 03/12/1994)

May

The Clinton Administration announces its “comprehensive” program for managing the U.S. stockpile of surplus plutonium. The U.S. and Russia will cooperate to tabulate and inspect each other’s stockpiles, ensuring that material is safely and securely stored. “We are willing to open our once most-secret sites in the nuclear weapons business [to inspection] in the same way we are suggesting the Russians do for us,” Gibbons explains. Further, he says that “we are helping Russia [design] a safe, secure storage site” for its plutonium, as well as proposing “a new initiative to help Russia find and fix the most urgent security and accounting problems throughout its far-flung nuclear complex.” (The Washington Post, 05/05/1994)

The Administration announces it is combining the national civil and military environmental satellite programs for the first time ever. This will decrease the number of satellites in orbit from four to three, as well as cut expenditures by up
to $300 million by the year 2000, Gibbons says. (*Rocky Mountain News*, 05/11/1994)

July

Gore unveils the first stage of the promised “green” industrial policy to promote innovative environmental technologies. The plan proposes to eliminate rules discouraging new technologies, increase export-promotion efforts, and have the government certify new methods that work, such as biofriendly solvents and pollution-eating bacteria. The Administration is also funding $100 million over the next two years to help environmental businesses commercialize new technologies. Speaking of this program, Gibbons says, “Our vision is of long-term economic growth that creates jobs while improving and sustaining the environment.” (*Business Week*, 07/25/1994)

August

The White House publishes a new plan for science, “Science in the National Interest,” which is a product of collaboration between the Administration and researchers in industry and academia. The science plan is the first to be produced by a U.S. president since 1979, and its goals are to continue U.S. leadership at “the frontiers of scientific knowledge,” and to produce “the finest scientists and engineers for the 21st century.” The plan seeks to increase spending on research and development, and to shift the balance of funding in favor of civilian research over defense spending. The U.S. has already started to shift the balance by spending a larger portion of its defense budget on dual-use technologies that benefit both sectors. (*New Scientist*, 08/13/1994)

October

1995

January

Gibbons and other heads of science and technology agencies testify before the House Science Committee, promising to cooperate with the new Congress and cautioning against broad funding cuts for research. Since the government is important in promoting technologies important to economic growth, but that do not generate adequate private investment, Gibbons says that the U.S. needs to move cautiously in cutting programs. (*The New York Times*, 01/07/1995)

In Tokyo, Gibbons and Japan’s Chief Cabinet Secretary Kozo Igarashi extend an agreement on cooperation in research and development in energy and related fields for another five years. (*Business Times*, 01/14/1995)

February

Speaking at a MIT conference on national science policy, Gibbons defends increases in funding for basic research in the Administration’s proposed budget, and warns that congressional cuts in funding for research and development could
have serious effects on the U.S. economy: “government is a vital partner in promoting technologies that are critical to economic growth, the creation of good jobs, and meeting the common needs of the nation.” However, government should allow the peer-review system to evaluate proposed research, rather than becoming involved in the details of funding decisions. “We cannot afford to limit our future by limiting our range of inquiry,” Gibbons says. Both Gibbons and Cornell University President express concern that budget cuts may target public-private partnerships, which would result in business being asked to carry more of the burden in research and development. (*The Boston Herald*, 02/08/1995; *The Boston Globe*, 02/08/1995)

June

The House Appropriations subcommittee on the legislative branch recommends eliminating the budget for the Office of Technology Assessment (OTA), which performs research on scientific and technological issues for Congress. Gibbons opposes this decision as he explains that most legislators “do not have formal training in these areas and they need to have access.” Further, Gibbons says, “Expert knowledge, especially about science and technology, [is] increasingly and pervasively part of the decisions we have to make as a society.” The OTA closes on September 29, 1995. (*The Washington Post*, 06/12/1995; http://www.gpo.gov/ota/)

1996

May

Gibbons addresses school teachers receiving the 1995 Presidential Awards for Excellence in Science and Mathematics Teaching at an awards ceremony at the National Academy of Sciences. (*Times-Picayune-New Orleans*, 05/05/1996)

July

A poll commissioned by the National Science and Technology Medals Foundation finds that over 80% of those surveyed want the government to play a larger role in science, and a similar number consider U.S. leadership in technology to be a national priority. “The American public understands what many in Washington do not—that science and technology are investments in our future, not expendable frills,” Gibbons says. (*Information Week*, 07/29/1996)

Gibbons criticizes efforts by conservatives in Congress to cut research in science and technology, calling such attempts “very dangerous.” Several bills passed by the U.S. House of Representatives would eliminate or reduce certain research programs, including one that would reduce funding for global climate change research. While some Republicans favoring this bill say the evidence of global climate change is too weak to warrant funding, Gibbons says funding is needed for climate research in order to obtain the knowledge necessary for making informed decisions: “That’s something like saying don’t investigate astronomy because you might find out it’s not an Earth-centered universe.” (*St. Louis Post-Dispatch*, 07/31/1996)
September Gibbons announces the Administration’s revised space policy in advance of a December “space summit,” which will involve Administration and congressional officials. The Clinton Administration is abandoning George H.W. Bush’s goal of landing a person on Mars by 2019, in favor of putting a robot on Mars by 2000. (The Atlanta Journal- Constitution, 09/19/1996)
December Gibbons unveils the National Space Policy at a luncheon organized by the American Institute of Aeronautics and Astronautics. The new policy outlines the goals of the U.S. space program, including increasing knowledge of the Earth, solar system, and universe through human and robotic exploration; to strengthen the national security of the U.S.; to increase economic competitiveness, as well as the scientific and technical capabilities of the U.S.; to promote investments in space technologies; and to encourage international cooperation. The media reports differences between the new policy and the 1988 policy, such as a shift away from the Cold War mentality of a “space race” with the former Soviet Union, and not specifically supporting the expansion of human presence in space.
(Aerospace America, 12/1996)

1997

January Clinton calls for a bipartisan space summit after evidence is found of possible life on Mars. However, White House officials caution too much should not be expected of the summit, as it is only an initial step in plans to search for life beyond Earth. “I’m not that optimistic that we can or even should get a high degree of specificity by January or February,” Gibbons says. He notes that such discoveries show “our notion that somehow life is such a rare commodity may just in fact be the reverse—life may be more pervasive, more ubiquitous in the universe.” (Aviation Week and Space Technology, 01/06/1997)

March At an Industry Canada forum on science and technology, Gibbons says the key to the success of the U.S. economy has been its investments in new technologies, which has made the United States a world leader in areas such as aerospace, computers, and biotechnology. “Technology is the single most important determining factor in sustained economic growth,” Gibbons says. He explains that the U.S. has greatly invested in science and technology over the past 50 years, and that “as we enter the 21st century, these types of investments will increase in their importance and indeed in their necessity.” (The Toronto Star, 03/18/1997)

May The media reports that former CIA Director and Deputy Defense Secretary John M. Deutch may replace Gibbons as OSTP Director. (The Washington Post, 05/16/1997)

June “Next Generation Internet (NGI),” an Administration initiative that proposes to connect over 100 universities and research institutions to an Internet nearly 70 times faster than current university systems, is delayed in both the House and Senate. Twenty-four senators send Gibbons a letter complaining about the composition of NGI’s panel. Of the twenty members, only eight states are represented, none of which are primarily rural. (Internet World, 06/09/1997)
July

Gibbons speaks at a conference on global warming in Seattle. The media reports that he shows an overhead transparency with worldwide atmospheric carbon dioxide concentrations, with the increase readily apparent and depicted as a red line. Gibbons says, “If we just keep merrily (going) along, as some would have us do, for the rest of this century (the red line) would be up and onto the next floor of this building. We will have caused in one century a geological blink of an eye.” However, he is optimistic about the possibility of change: “Are we smart enough to have enough interest in our descendants to take the kind of action that will assure their future? I think we are smart enough.” (*The Seattle Times*, 07/15/1997)

The media reports that Gibbons believes the mishaps encountered by the U.S. astronauts on the Russian Space Station Mir may have been more valuable than their planned experiments. “I would hazard a guess that at least as long as we don’t make the same mistake twice, that each one of these mishaps or circumstances has been absolutely invaluable in teaching us lessons that will come in very handy when we do further work in space like the space station,” Gibbons says. The accidents on Mir include a fire in February, an oxygen-generation breakdown in March, a cooling system leak in April, and a collision with an unmanned spacecraft in June. (*Houston Chronicle*, 07/24/1997)

Gibbons says the success of the Mars mission “has reinforced, rather than given us pause” about continuing “smaller, cheaper, faster” missions with robots, as he explains that the Mars Pathfinder “was a riverboat gamble in about five different ways,” including the landing system consisting of inflatable bags. (*Houston Chronicle*, 07/24/1997)

Gibbons believes the American space program is improved for having sent five astronauts to Mir. However, the outcome of a repair mission to Mir will determine whether more astronauts will be sent in the future: “Exactly what we do in August and September will depend on whether we can get the power restored in Mir to some adequate level.” (*Rocky Mountain News*, 07/24/1997)

October

Gibbons gives formal White House approval for the launch of NASA’s Cassini spacecraft for its seven year voyage to Saturn. The launch has revived public debate on the safety of nuclear powered spacecraft, with opponents warning of the dangers of radioactive debris, which could result if an accident occurred. However, many experts view the risk to be extremely small. “NASA and its interagency partners have done an extremely thorough job of evaluating and documenting the safety of the Cassini mission,” Gibbons says. (*The Washington Post*, 10/12/1997)
1998

February Clinton announces the resignation of Gibbons, effective March 15, at the 150th anniversary meeting of the American Association for the Advancement of Sciences (AAAS) in Philadelphia. Speaking of Gibbons, Clinton says, “His ability to build bipartisan coalitions on contentious issues from nuclear testing to cloning to climate change has strengthened our nation immeasurably.” Gibbons is named President of Resource Strategies. Clinton nominates Director of the National Science Foundation Neal Lane to replace Gibbons. (*Pittsburgh Post-Gazette*, 02/14/1998; *New Scientist*, 02/21/1998)

1998-1999 Gibbons serves as the Karl T. Compton Lecturer at the Massachusetts Institute of Technology.

1999-2000 Gibbons is a Senior Fellow at the National Academy of Engineering (NAE), where he assists the NAE President on various topics including a new program in Earth Systems Engineering.

1999-2001 Gibbons is a Senior Advisor to the U.S. State Department, where he assists the Secretary in revitalizing science and technology capabilities in the Department.
JOHN H. GIBBONS SUGGESTED TOPICS
*Prepared by Cynthia Boyles
Miller Center, University of Virginia, 08/18/2006*

Joining the Clinton Administration
- When did you first meet Bill Clinton? Describe your initial impressions of him.
- How did you first meet Al Gore? What were your impressions of him?
- How did you come to be appointed Director of Science and Technology Policy? Were you offered any other positions? Did you have any prospective discussions with the President about what he wanted from his Director of Science and Technology Policy?

Director of Science and Technology Policy
- Describe your responsibilities as Director of Science and Technology Policy. What aspects of your job occupied most of your time? What were the main challenges you faced upon your arrival?
- How involved was the President in formulating science and technology policy? In which issues was he most interested? How frequently did you propose policy ideas to the President?
- Assess the role of Gore and the Vice President’s Office in science and technology policy. Did this role change over time?
- Discuss your working relationship with the White House staff. With whom in the West Wing did you work most closely and on what issues?
- Characterize your working relationships with other members of the Cabinet. Describe Cabinet meetings during the Clinton Administration. How effective was the Cabinet as a policy-making institution?
- With whom in the Congress did you work most closely? Describe your relationships with the Chairs of the House and Senate committees that dealt with science and technology issues. Describe any challenges you experienced in promoting science and technology legislation on Capitol Hill.
- Why was the Office of Technology Assessment shut down? How did this loss affect your relationship with Capitol Hill on science and technology issues?
- Describe your interactions with science and technology groups. Which groups were your main allies and adversaries? Characterize relations between the Clinton Administration and the scientific community, and how this evolved during your tenure.
- Discuss the process through which major science and technology policies were formulated, proposed, and implemented in the Clinton Administration.
- How was science policy transformed in the post-Cold War era? How involved were Clinton and Gore in this process?
- What were the challenges involved in attempting to increase collaboration between governmental agencies and between industry and government on science and technology issues? What were the biggest successes or failures in this endeavor?
- In formulating presidential budget requests, which science and technology issues were your main priorities? How did this change from previous administrations?
• Discuss your role in formulating, promoting, and implementing science and technology policies such as the super collider, fuel-efficient cars, nuclear materials, the space program, green technologies, and the Internet. What were the main challenges involved?

The Clinton Presidency in Retrospect
• What do you consider your greatest accomplishments as Director of Science and Technology Policy? What were the most challenging aspects of your job?
• What were Clinton’s greatest assets as President? Assess his strengths and weaknesses as a domestic policymaker, a legislative leader, and a leader of public opinion. Which of his attributes served him best in the presidency?
• What features of the Clinton presidency, and your role in it, were overlooked or misunderstood by the press?
• What will be the Clinton Administration’s lasting legacy on science and technology policy?
• Where were the tensions between science and politics during your tenure? Where did science get hurt by politics?
SELECTED WRITINGS AND PUBLIC STATEMENTS BY JOHN H. GIBBONS

• John H. Gibbons, “Has the Time of Witches Passed Over?” Address to the American Association for the Advancement of Science,” Washington, D.C., 04/14/1999.

• John H. Gibbons, Draft chapter for future publication (added by respondent), 09/06/2006.
TIMELINES

• John H. Gibbons News Timeline, prepared by Cynthia Boyles, Miller Center, University of Virginia, 08/17/2006.

• “Office of Science and Technology Policy during the Clinton Administration,” prepared by Jessica M. Steiner, Miller Center, University of Virginia, 12/04/2006.

• Timeline of the Clinton Presidency, prepared by Robbie Robinson, Miller Center, University of Virginia, 05/30/2002.

DIRECTOR OF SCIENCE AND TECHNOLOGY POLICY

KEY ISSUES AND EVENTS IN SCIENCE AND TECHNOLOGY POLICY

Budget Requests

General Strategy

- A Report to the Congress: Science and Technology Shaping the Twenty-First Century, Executive Office of the President, Office of Science and Technology Policy, April 1997.

Space Station

Super Collider

Nuclear Material & Labs

Information Superhighway
• John Burgess, “Data Highways…Can We Get There From Here?” The Washington Post, 05/02/1993.

Other
• Peter Behr, “Future Wheels, or a Waste of Time?” The Washington Post, 10/13/1993.